1. Warm-up.

Solve the integral $\int_{-2}^{2} \frac{1}{x^{2}} d x$.
2.

The temperature of a room $T(t)$ in ${ }^{\circ} \mathrm{F}$ at time t is given by

$$
T(t)=85-3 \sqrt{25-t} \text { for } 0 \leq t \leq 25
$$

(a) Find the room's temperature when $t=0, t=16$ and $t=25$.
(b) Find the room's average temperature for $0 \leq t \leq 25$.

3.

Archimedes discovered that the area under a parabolic arch is two-thirds the base times the height. Sketch the parabolic arch

$$
y=h-\left(\frac{4 h}{b^{2}}\right) x^{2} \quad \text { for } \quad-\frac{b}{2} \leq x \leq \frac{b}{2},
$$

assuming that h and b are positive. Then use calculus to find the area of the region enclosed between the arch and the x-axis.
4.

Using the FTC, evaluate $\int_{0}^{1} x^{2} d x$. Then, evaluate it using right-handed Riemann sums (with equal-width subintervals) and the fact that

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

