1. Area Accumulation Functions

Consider the function $f(x)$ whose graph is given below.

(a) Define $F(x)=\int_{0}^{x} f(t) d t$. What does this function represent?
(b) Fill in the chart below

x	-1	0	1	2	3	4	5	6	7
$F(x)$									

(c) Shade in and find the area represented by $F(3)-F(1)$.
(d) Find a formula for $F(x)$ between $x=0$ and $x=1$.
(e) Give the open intervals from -2 to 7 on which f increasing and decreasing. Explain.

2. Fundamental Theorem of Calculus (Part 1).

Let $f(t)$ be continuous function on $[a, b]$. Let $F(x)=\int_{a}^{x} f(t) d t$.
(a) Let $f(t)>0$. Sketch the area $F(x+h)-F(x)$ where h is a small positive number.
(b) Approximate $F(x+h)-F(x)$ by the area of a rectangle.
(c) Use part $2(\mathrm{~b})$ to compute $F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}$.

3. Applying the Fundamental Theorem of Calculus.

Theorem. Let f be continuous on $[a, b]$ then $F(x)=\int_{a}^{x} f(t) d t$ is continous on $[a, b]$ and differentiable on (a, b). The derivative of F is

$$
F^{\prime}(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

For the following questions, use the First Fundamental Theorem of Calculus to find $F^{\prime}(x)$.
(a) $F(x)=\int_{1}^{x} \sqrt[4]{t} d t$
(b) $F(x)=\int_{0}^{x} \sec ^{2} t d t$
(c) $F(x)=\int_{3}^{5 x^{2}+8} \cos (t) d t \quad$ (Don't forget about the chain rule!)
(d) $F(x)=\int_{\sin (x)}^{x^{2}} \frac{1}{t^{3}} d t \quad$ (Can you break this up somehow?)

4. Extra practice.

A particle is moving along the x-axis. The position of the particle at time t seconds is given by $x(t)=(t-1)(t-3)^{2}, 0 \leq t \leq 5$. Find the total distance (in meters) the particle travels in 5 seconds.

