## 1. Review of Riemann Sums.

Let $f$ be a continuous function on $[a, b]$. A Riemann sum for $f$ on the interval $[a, b]$ is a sum of the form

$$
S_{P}=\sum_{k=1}^{N} f\left(c_{k}\right) \Delta x_{k}
$$

where

- $P=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ is a partition of $[a, b]$, i.e.

$$
a=x_{0}<x_{1}<\cdots<x_{N}=b
$$

- $c_{k}$ is in $\left[x_{k-1}, x_{k}\right]$, and
- $\Delta x_{k}=x_{k}-x_{k-1}$.

Changing $c_{k}$ we get different Riemann sums:

- For left Riemann sum, set $c_{k}=x_{k-1}$.
- For right Riemann sum, set $c_{k}=x_{k}$.
- For midpoint Riemann sum, set $c_{k}=\left(x_{k-1}+x_{k}\right) / 2$.
- For upper Riemann sum, set $f\left(c_{k}\right)$ to be max $f$ value in $\left[x_{k-1}, x_{k}\right]$.
- For lower Riemann sum, set $f\left(c_{k}\right)$ to be $\min f$ value in $\left[x_{k-1}, x_{k}\right]$.


## 2. Definition of definite integral.

Let $f$ be a continuous function on $[a, b]$. The definite integral of from $a$ to $b$ is the area under $f$ from $a$ to $b$, which can be evaluated as:

$$
\int_{a}^{b} f(x) d x=\lim _{N \rightarrow \infty}\left(\sum_{k=1}^{N} f\left(a+k \frac{b-a}{N}\right) \frac{b-a}{N}\right)
$$

as long as the limit exists.
Compute the following integrals by using area formulas for familiar geometric figures.
(a) $\int_{0}^{1} x d x$
(b) $\int_{-2}^{2} 2-|x| d x$
(c) $\int_{-3}^{3} \sqrt{9-x^{2}} d x$
(d) $\int_{-1}^{1} x d x$

