1. A grammar for arithmetic expressions.

Arithmetic expressions are made from the following atomic elements ... with placeholder variables ...

- Var = variables
x
- $\mathbb{R}=$ real numbers r
- $\mathbb{Z}=$ integers n
- Operators $=\{+,-, *, /\}$

A grammar for arithmetic expressions is

(a) The first line of the grammar means "An AExp is an AExp plus an AExp, or an AExp minus AExp, or a term." Do the same thing for the other two lines by analogy.
(b) Why is " $* 3$ " not an AExp?
(c) Why is " $1+2+3$ " an AExp?
(d) Draw a syntax tree for " $(1+2) * 3$ " and evaluate it.
(e) Draw a syntax tree for " $1+2 * x$." Compare this tree to the one from part (d).

2. Evaluating Sigma Notation.

In this section we will add a new kind of arithmetic expression to our grammar:

$$
\begin{aligned}
& \text { AExp } \\
& a \stackrel{\text { def }}{=} a_{1}+a_{2}\left|a_{1}-a_{2}\right| t \mid \sum_{x=n_{1}}^{n_{2}} f \\
& \text { term } \\
& \text { factor } \\
& t \stackrel{\text { def }}{=} t_{1} * t_{2}\left|t_{1} / t_{2}\right| f
\end{aligned}
$$

To evaluate, for each integer in the interval $\left[n_{1}, n_{2}\right]$, replace x in f for the integer, then add them together.
(a) Evaluate $\sum_{k=1}^{10}(k+1)$.
(b) Evaluate $\sum_{k=5}^{7}(k+1)$.
(c) Evaluate $\sum_{k=5}^{5}(k+1)$.
(d) Evaluate $\sum_{k=5}^{7} 1$.
(e) Evaluate $\sum_{k=9}^{11}(k+1)^{2}$.
(f) Fill in the blanks for $\sum_{k=\text { __ }} k^{2}$ so that this is the same sum as the one in part (e).

3. Sigma has complications: free and bound variables.

(a) Consider the function $f(k)=k+\sum_{k=1}^{5} k$. What do you think should be $f(1)$?
(b) The syntax tree for " $k+\sum_{k=1}^{5} k$ " is

Each Σ (with variable k) binds all instances below the Σ, starting with the lowest one (like with evaluation). The remaining variables are free. When substituting 1 for k in $f(k)$, we only substitute the free instances of k.
(c) Either by drawing a syntax tree or just inspecting the expression, indicate the bindings (each k to which Σ) and free instances of the variable " k " in the expression

$$
3 * k+\sum_{k=1}^{5}\left(k *\left(\sum_{k=1}^{5}(k * k)+2 * \sum_{k=1}^{5}(k+1)\right)\right) .
$$

