Math 1110: Arithmetic Expressions and Sigma Notation

## 1. A grammar for arithmetic expressions.

| Arithmetic expressions are made from the | e follo | wing     | atomic elements with placeholder variables |
|------------------------------------------|---------|----------|--------------------------------------------|
| • <i>Var</i> = variables                 | x       |          | -                                          |
| • $\mathbb{R}$ = real numbers            | r       |          |                                            |
| • $\mathbb{Z} = integers$                | п       |          |                                            |
| • Operators = $\{+, -, *, /\}$           |         |          |                                            |
| A grammar for arithmetic expressions is  |         |          |                                            |
| AExp                                     | а       | def<br>≝ | $a_1 + a_2 \mid a_1 - a_2 \mid t$          |
| term                                     | t       | def<br>≡ | $t_1 * t_2 \mid t_1/t_2 \mid f$            |
| factor                                   | f       | def<br>= | (a)   r   n   x                            |
|                                          |         |          |                                            |

(a) The first line of the grammar means "An *AExp* is an *AExp* plus an *AExp*, or an *AExp* minus *AExp*, or a term." Do the same thing for the other two lines by analogy.

(b) Why is "\*3" not an *AExp*?

(c) Why is "1 + 2 + 3" an *AExp*?

(d) Draw a syntax tree for "(1 + 2) \* 3" and evaluate it.

(e) Draw a syntax tree for "1 + 2 \* x." Compare this tree to the one from part (d).

## 2. Evaluating Sigma Notation.

In this section we will add a new kind of arithmetic expression to our grammar:  $\frac{n_2}{def}$ 

AExp
$$a \stackrel{\text{def}}{=} a_1 + a_2 \mid a_1 - a_2 \mid t \mid \sum_{x=n_1} f$$
term $t \stackrel{\text{def}}{=} t_1 * t_2 \mid t_1/t_2 \mid f$ factor $f \stackrel{\text{def}}{=} (a) \mid r \mid n \mid x$ 

To evaluate, for each integer in the interval  $[n_1, n_2]$ , replace x in f for the integer, then add them together.

(a) Evaluate 
$$\sum_{k=1}^{10} (k+1)$$
.

(b) Evaluate 
$$\sum_{k=5}^{7} (k+1)$$
.

(c) Evaluate 
$$\sum_{k=5}^{5} (k+1)$$
.

(d) Evaluate 
$$\sum_{k=5}^{7} 1$$
.

(e) Evaluate 
$$\sum_{k=9}^{11} (k+1)^2$$
.

(f) Fill in the blanks for  $\sum_{k=-}^{\infty} k^2$  so that this is the same sum as the one in part (e).

## 3. Sigma has complications: free and bound variables.

(a) Consider the function 
$$f(k) = k + \sum_{k=1}^{3} k$$
. What do you think should be  $f(1)$ ?



Each  $\Sigma$  (with variable k) binds all instances below the  $\Sigma$ , starting with the lowest one (like with evaluation). The remaining variables are *free*. When substituting 1 for k in f(k), we only substitute the free instances of k.

(c) Either by drawing a syntax tree or just inspecting the expression, indicate the bindings (each *k* to which  $\Sigma$ ) and free instances of the variable "*k*" in the expression

$$3 * k + \sum_{k=1}^{5} \left( k * \left( \sum_{k=1}^{5} (k * k) + 2 * \sum_{k=1}^{5} (k + 1) \right) \right)$$