1. Graphs of Antiderivatives

For each of the following functions g, sketch a function f on the right such that f' = g.

Adapted from work by S. Bennoun, M. Hin, and T. Holm ©

2. Some theory on antiderivatives.

In what way is the antiderivative a kind of "inverse" for derivatives? (Skip this question if you're working ahead.)

If f_0 and f_1 are both antiderivatives of g, how different can f_0 and f_1 be?

3. Antiderivatives of functions.

Write down the antiderivatives of:

$$x^a, a \neq -1$$
 $f' + g'$ x^{-1} $f' \cdot g + f \cdot g'$ e^x $-\frac{f'}{f^2}$ $\cos(x)$ $\frac{f'}{f}$ $\sec^2(x)$ $2 \cdot f \cdot f'$ $\frac{1}{\sqrt{1-x^2}}$ $a^x, a > 0$

4. Specific antiderivatives.

If we specify the value that the antiderivative must take at a single point, then we can get a *unique* antiderivative. For each of the following parts, find the unique function f such that:

(a)
$$f'(x) = x^2$$
 and $f(0) = 1$.

(b)
$$f'(x) = \frac{2}{\sqrt{1-4x^2}}$$
 and $f(1/2) = \pi$.

(c)
$$f''(x) = 2 + \cos(x)$$
, $f'(0) = 2$, and $f(0) = 3$.