1. Graphs of Antiderivatives

For each of the following functions g, sketch a function f on the right such that $f^{\prime}=g$.

[^0]
2. Some theory on antiderivatives.

In what way is the antiderivative a kind of "inverse" for derivatives? (Skip this question if you're working ahead.)

If f_{0} and f_{1} are both antiderivatives of g, how different can f_{0} and f_{1} be?

3. Antiderivatives of functions.

Write down the antiderivatives of:
\(\left.\left|\begin{array}{c|c}x^{a}, a \neq-1

x^{-1}

e^{x}

\cos (x)

\sec ^{2}(x)

\frac{1}{\sqrt{1-x^{2}}}\end{array}\right|\)| $f^{\prime}+g^{\prime}$ |
| :---: |
| $\frac{f^{\prime}}{f}$ |
| $-\frac{f^{\prime}}{f^{2}}$ |
| $\frac{f^{\prime}}{f}$ |
| $2 \cdot f \cdot g^{\prime}$ |
| $a^{x}, a>0$ | \right\rvert\,

4. Specific antiderivatives.

If we specify the value that the antiderivative must take at a single point, then we can get a unique antiderivative. For each of the following parts, find the unique function f such that:
(a) $f^{\prime}(x)=x^{2}$ and $f(0)=1$.
(b) $f^{\prime}(x)=\frac{2}{\sqrt{1-4 x^{2}}}$ and $f(1 / 2)=\pi$.
(c) $f^{\prime \prime}(x)=2+\cos (x), f^{\prime}(0)=2$ and $f(0)=3$.

[^0]: Adapted from work by S. Bennoun, M. Hin, and T. Holm ©

