Mean Value Theorem Suppose that f is continuous on $[a, b]$ and differentiable on (a, b). Then there is some point c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

A function f is strictly increasing in an interval I, if for all x, y in I where $x<y, f(x)<f(y)$.

For each of the following statements, explain why they are true (citing appropriate theorems or definitions) or give a counterexample. In all statements, we assume that f is continuous on its domain $[a, b]$ and differentiable on (a, b).

1. If $f^{\prime}>0$ on (a, b), then $\frac{f(b)-f(a)}{b-a}>0$.
2. If $\frac{f(b)-f(a)}{b-a}>0$, then $f^{\prime}>0$ on (a, b).
3. If $f^{\prime}>0$ on (a, b), then f is strictly increasing on (a, b).
4. If f is strictly increasing on (a, b), then $f^{\prime}>0$ on (a, b).
5. If $f^{\prime}=0$ on (a, b), then f is constant on (a, b).
6. If c is a point of inflection of f, then $f^{\prime \prime}(c)=0$.
7. If $f^{\prime \prime}(c)=0$, then c is a point of inflection of f.
8. If $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
9. If f has a local minimum at c, then $f^{\prime \prime}(c)>0$.

Extra Problem

If you have time, try to prove the following remarkable fact: if f is differentiable, then f^{\prime} has the intermediate value property, i.e., if a and b are in the domain of f and y is between $f^{\prime}(a)$ and $f^{\prime}(b)$, then there is x between a and b such that $f^{\prime}(x)=y$.

