Math 1110: Concavity and Curve Sketching (4.4)

Oct 31 (Wed)

Created by S. Bennoun, M. Hin, and T. Holm  $\mathbb{O},$  modified by Yuwen Wang

## 1. Objectives.

At the end of this section, you will be able to:

- explain the difference between concave up and concave down,
- use the second derivative of a function to determine:
  - on what interval(s) a curve is concave up, respectively concave down,
  - where the inflection points are,
  - the nature of a local extremum,
- qualitatively sketch the graph of a function using the information provided by the first and second derivatives,
- given the algebraic expression of a function as well as its graph (e.g. using a graphing software), qualitatively verify that the curve corresponds to the given function.

## 2. Concavity.

**Definition.** A differentiable function f(x) is

- concave up on an open interval I if f' is increasing on I.
- *concave down* on an open interval *I* if *f* ' is decreasing on *I*.

A function that is concave up on its entire domain is *convex*.

Consider the function  $f(x) = x^3 + 3x^2 - 1$ . On which intervals is the function concave up, respectively concave down?

**Second Derivative Test.** A twice differentiable function f(x) (on an interval *I*) is

- *concave up* on an open interval *I* if
- concave down on an open interval I if

## 3. Inflection points.

**Definition.** A point (c, f(c)) is a *point of inflection* if f has a tangent line at the point and the concavity changes.

Compute the inflection points for the following functions:

(a)  $f(x) = x^3$ 

(b)  $f(x) = \sqrt[3]{x}$ 

(c)  $f(x) = x^4$ 

(d)  $f(x) = x^3 + 2x^2 - 1$  (refer back to part 2.)

## 4. Curve sketching.

How to make a good curve sketch? Here are the main steps.



Using the procedure described above, sketch the following functions:



