Created by S. Bennoun, M. Hin, and T. Holm ©, modified by Yuwen Wang

1. Objectives.

At the end of this section, you will be able to:

- explain the difference between concave up and concave down,
- use the second derivative of a function to determine:
- on what interval(s) a curve is concave up, respectively concave down,
- where the inflection points are,
- the nature of a local extremum,
- qualitatively sketch the graph of a function using the information provided by the first and second derivatives,
- given the algebraic expression of a function as well as its graph (e.g. using a graphing software), qualitatively verify that the curve corresponds to the given function.

2. Concavity.

Definition. A differentiable function $f(x)$ is

- concave up on an open interval I if f^{\prime} is increasing on I.
- concave down on an open interval I if f^{\prime} is decreasing on I.

A function that is concave up on its entire domain is convex.
Consider the function $f(x)=x^{3}+3 x^{2}-1$. On which intervals is the function concave up, respectively concave down?

Second Derivative Test. A twice differentiable function $f(x)$ (on an interval I) is

- concave up on an open interval I if
- concave down on an open interval I if

3. Inflection points.

Definition. A point $(c, f(c))$ is a point of inflection if f has a tangent line at the point and the concavity changes.

Compute the inflection points for the following functions:
(a) $f(x)=x^{3}$
(b) $f(x)=\sqrt[3]{x}$
(c) $f(x)=x^{4}$
(d) $f(x)=x^{3}+2 x^{2}-1$ (refer back to part 2.)

4. Curve sketching.

How to make a good curve sketch? Here are the main steps.
1.
2.
3.
4.
5.
6.

Using the procedure described above, sketch the following functions:
(a) $f(x)=x \sqrt{9-x^{2}}$

(b) $f(x)=\frac{x^{2}-3}{x^{2}-4}$

(c) $f(x)=\sqrt{|x|}$

