Created by S. Bennoun, M. Hin, and T. Holm ©, modified by Yuwen Wang

1. Objectives.

At the end of this section, you will be able to:

- explain in words what an indeterminate form is,
- explain what L'Hôpital's rule is, when we can use it, and what kinds of limits we can compute with it,
- correctly use L'Hôpital's rule to compute limits.

2. Indeterminate forms.

(a) If we want to compute $\lim _{x \rightarrow \infty} \frac{x}{x^{2}-9}$, what happens when you try to "plug in" $x=\infty$? What "algebraic manipulation" can we do to compute this limit?
(b)

Definition: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ has indeterminate form $\frac{0}{0}$ if $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$.
Similarly, we can define indeterminate forms $\frac{\infty}{\infty}, \infty \cdot 0, \infty-\infty, 0^{0}, 1^{\infty}, \infty^{0}$.

For each of the following limits, write down their indeterminate form if applicable.

$$
\lim _{x \rightarrow 0} \frac{3 x-\sin x}{x} \quad \lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}} \quad \lim _{x \rightarrow 1} \frac{\ln x}{x-1} \quad \lim _{x \rightarrow 0} x \sin (1 / x)
$$

3. L'Hôpital's rule.

Suppose that $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ has indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Suppose also that there is an open interval I containing a such that:

1. f and g are differentiable on I;
2. g^{\prime} is never 0 on I (except maybe at a).

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided the limit on RHS exists.
What do you have to check before applying l'Hôpital's rule? (There may be multiple items for each line.)
f has to satisfy:
g has to satisfy:
Other conditions:

4. Exercises.

(a) $\lim _{x \rightarrow \infty} x^{3} e^{-x}$
(b) $\lim _{x \rightarrow 0} \frac{3^{x}-1}{2^{x}-1}$
(c) $\lim _{x \rightarrow \infty} x \sin (1 / x)$
(d) $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$
(e) $\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$
(f) $\lim _{x \rightarrow \pi / 2} \frac{\sec x}{1+\tan x}$
(g) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$. Hint: find the limit of the \ln of the given function.
(h) A questions asks $\lim _{x \rightarrow \infty} \frac{x+\sin x}{x}$. Consider the following "solution."

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x+\sin x}{x}(& \left.=" \frac{\infty}{\infty} ", \text { use L'Hôpital's rule }\right) \\
& =\lim _{x \rightarrow \infty} \frac{1+\cos x}{1} \\
& =\lim _{x \rightarrow \infty} 1+\cos x .
\end{aligned}
$$

Since $\cos x$ oscillates when x goes to infinity, the limit $\lim _{x \rightarrow \infty} \frac{x+\sin x}{x}$ does not exist.

Why is this solution incorrect? (Hint: refer back to the hypotheses you listed in section 3.)

