Math 1110: **Indeterminate Forms (Section 4.5)** Created by S. Bennoun, M. Hin, and T. Holm ©, modified by Yuwen Wang

1. Objectives.

At the end of this section, you will be able to:

- explain in words what an indeterminate form is,
- explain what L'Hôpital's rule is, when we can use it, and what kinds of limits we can compute with it,
- correctly use L'Hôpital's rule to compute limits.

2. Indeterminate forms.

(a) If we want to compute $\lim_{x\to\infty} \frac{x}{x^2-9}$, what happens when you try to "plug in" $x = \infty$? What "algebraic manipulation" can we do to compute this limit?

(b) Definition: $\lim_{x\to a} \frac{f(x)}{g(x)}$ has indeterminate form $\frac{0}{0}$ if $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$. Similarly, we can define indeterminate forms $\frac{\infty}{\infty}$, $\infty \cdot 0$, $\infty - \infty$, 0^0 , 1^∞ , ∞^0 .

For each of the following limits, write down their indeterminate form if applicable.

 $\lim_{x \to 0} \frac{3x - \sin x}{x} \qquad \qquad \lim_{x \to \infty} \frac{e^x}{x^2} \qquad \qquad \lim_{x \to 1} \frac{\ln x}{x - 1} \qquad \qquad \lim_{x \to 0} x \sin(1/x)$

3. L'Hôpital's rule.

Suppose that $\lim_{x\to a} \frac{f(x)}{g(x)}$ has indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Suppose also that there is an open interval *I* containing *a* such that:

1. *f* and *g* are differentiable on *I*;

2. g' is never 0 on *I* (except maybe at *a*).

Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided the limit on RHS exists.

What do you have to check before applying l'Hôpital's rule? (There may be multiple items for each line.)

f has to satisfy:

g has to satisfy:

Other conditions:

4. Exercises.

(a) $\lim_{x \to \infty} x^3 e^{-x}$

(b)
$$\lim_{x \to 0} \frac{3^x - 1}{2^x - 1}$$

(c)
$$\lim_{x \to \infty} x \sin(1/x)$$

(d)
$$\lim_{x \to \infty} \frac{\sin x}{x}$$

(e)
$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$

(f)
$$\lim_{x \to \pi/2} \frac{\sec x}{1 + \tan x}$$

(g) $\lim_{x\to\infty} \left(1 + \frac{1}{x}\right)^x$. Hint: find the limit of the ln of the given function.

(h) A questions asks $\lim_{x\to\infty} \frac{x+\sin x}{x}$. Consider the following "solution."

$$\lim_{x \to \infty} \frac{x + \sin x}{x} (= \frac{\infty}{\infty}, \text{ use L'Hôpital's rule})$$
$$= \lim_{x \to \infty} \frac{1 + \cos x}{1}$$
$$= \lim_{x \to \infty} 1 + \cos x.$$
Since $\cos x$ oscillates when x goes to infinity, the limit $\lim_{x \to \infty} \frac{x + \sin x}{x}$ does not exist.

Why is this solution incorrect? (Hint: refer back to the hypotheses you listed in section 3.)