Math 1110: Linearization
Created by S. Bennoun, M. Hin, and T. Holm ©, modified by Yuwen Wang
The goal of this activity is to see how we can compute (as opposed to only look at) an approximation of a given function around some points.

1. Using Desmos or Geogebra, draw the graph of the function \sqrt{x}.
2. Use 3 line segments to approximate the function from 0 to 9 .
3. Compute the equation of the tangent line y_{1} at $x=1$. Then draw this line y_{1} on the graph.
4. When you zoom in around $(1,1)$, what do you notice about the function and the tangent line? A specific feature becomes more prominent as you zoom in.
5. Compute now the equation of the tangent line y_{9} at $x=9$ and draw it on the graph.
6. When you zoom in around $(9,3)$, what do you notice about the function and its tangent line? What is similar and what is different from zooming in around $(1,1)$?
7. Can you compute the exact value of the point on the tangent line y_{1} for the $x=2$. What is it? Same question for y_{9} at $x=10$.
8. What about computing the exact values of $\sqrt{2}$ and $\sqrt{10}$?
9. How can these tangent lines be useful for approximating the values of $\sqrt{2}$ and $\sqrt{10}$?
10. Finally, how can we compute the equation of the tangent line that touches the function $x=6$. What works and what doesn't work? What do you conclude from that?
