Created by Jun Le Goh © , modified by Yuwen Wang

1. Review of Inverse Trignometric Function.

For each of the following functions, pick a domain where the function is domain. Sketch the function, and state the range for that domain.
(a) $\arcsin (x)$

Domain:
Range:
(b) $\arccos (x)$

Domain:
Range:
(c) $\arctan (x)$

Domain:
Range:

2. Derivative of arcsin.

Last time, we saw that the derivative of an inverse function is $\left(f^{-1}\right)^{\prime}(x)=$ This formula assumes that
(i) f^{-1} exists on an interval around x and is differentiable at x;
(ii) f is differentiable at $f^{-1}(x)$;
(iii) $f^{\prime}\left(f^{-1}(x)\right) \neq 0$.

Let's compute the derivative of $\arcsin x$.
(a) $\cos (\arcsin x)$ looks pretty gross, but it can be simplified. Use a trigonometric identity (or draw a right-angled triangle) to show that

$$
\cos (\arcsin x)=\sqrt{1-x^{2}}
$$

(b) Based on the graph of arcsin, on what interval is it differentiable?
(c) Compute the derivative of $\arcsin x$.
3. Derivative of arctan.
(a) Complete the following trigonometic identities:

$$
\begin{array}{r}
\sin ^{2} x+\cos ^{2} x= \\
1+\tan ^{2} x= \\
\arcsin x+\arccos x=
\end{array}
$$

(b) Use a trigonometric identity to show that

$$
\sec ^{2}(\arctan x)=1+x^{2}
$$

(c) Based on the graph of arctan, on what interval is it differentiable?
(d) Compute the derivative of $\arctan x$.

4. Extra problems.

(a) Using a trigonometric identity and the derivative of $\arcsin x$, compute the derivative of $\arccos x$. (Once you have the right trigonometric identity, this is really easy.)
(b) Compute the derivative of $\arcsin (1-t)$. On what interval is this answer valid?

