Created by S. Bennoun, M. Hin, and T. Holm ©c, modified by Yuwen Wang

1. Objectives.

- recognize when the chain rule is needed
- appropriately apply the chain rule to compute derivatives of functions

2. Chain rule.

Let f and g be functions. To apply the chain rule we need to check the following:

Then we can conclude
\bullet
-

3. Chain rule application.

Compute the derivatives of the following functions (using the appropriate rules). Here you do NOT need to simplify your answer.
(a) $f(t)=\cos \left(t^{2}\right)$
(b) $g(x)=\sqrt{2 x^{3}+4 x+2}$
(c) $h(z)=2 e^{z^{2}+4 z}+5 z+3$
(d) $k(x)=\sin (x) \cdot\left(x^{2}+5 x\right)^{100}$
(e) $g(t)=\frac{e^{t}+1}{\sin \left(t^{4}\right)}$
(f) $k(z)=e^{\cos \left(z^{2}\right)}$
(g) $f(x)=\tan ^{3}\left(\sqrt{x^{5}+2}\right)$

4. Chain rule from graphs.

Consider the two functions $f(x)$ and $g(x)$ below.

(a) Let $h(x)=f(g(x))$. Find: $h^{\prime}(-2), h^{\prime}(0)$ and $h^{\prime}(1)$.
(b) Let $h(x)=f(f(x))$. Find: $h^{\prime}(-2), h^{\prime}(0)$ and $h^{\prime}(1)$.
(c) Let $h(x)=(f(x))^{2}$. Find: $h^{\prime}(-2), h^{\prime}(0)$ and $h^{\prime}(1)$.

5. Extra practice.

(a) Compute the derivatives of the following functions (using the appropriate rules). Here you do NOT need to simplify your answer.
(i) $f(x)=\sin ^{2}(x) \cdot\left(x^{2}+5 x\right)^{100}$
(ii) $h(t)=\frac{e^{t^{3}+t}+1}{\sin \left(t^{4}\right)}$
(b) Use the chain rule to find the derivative of $\frac{1}{g(x)}$.
(c) Use part (b), the chain rule and the product rule to prove the quotient rule.

