Created by S. Bennoun, M. Hin, and T. Holm ©c, modified by Yuwen Wang

1. Limits.

$f(x)= \begin{cases}0 & \text { if } x=0 \\ \frac{x}{|x|} & \text { if } x \neq 0\end{cases}$
$g(x)=\sin (1 / x)$

$h(x)=\frac{1}{(x-1)^{2}}$
(a) For each function, describe its domain and range.
(b) For each function, identify the x values where the limit does not exist. Explain why they do not exist.

2. Intermediate Value Theorem.

(a) Given $f(1)=4$ and $f(2)=-3$ which of the following is true by the Intermediate Value Theorem?
i) there exists a constant c such that $-4<c<3$ and $f(0)=c$.
ii) $f(x)$ has a root between $[1,2]$.
iii) $f(2) \leq f(x) \leq f(1)$ for any $1<x<2$.
iv) for any value $-3 \leq y \leq 4$, there is some x-value $1 \leq x \leq 2$ so that $f(x)=y$.
v) for any value $1 \leq x \leq 2$, there is some y-value $-3 \leq y \leq 4$ so that $f(x)=y$.
(b) Do the graphs of $y=x^{3}$ and $y=1+x-2 x^{2}$ intersect at a positive value of x ?

