Created by S. Bennoun, M. Hin, and T. Holm ©c, modified by Yuwen Wang

1. Objectives.

- compute the derivative of trigonometic functions $(\sin x, \cos x, \tan x)$

2. Compute the derivative of $\sin x$.
(a) Writing the $\lim _{h \rightarrow 0}$ definition of the derivative, write down the definition of $f^{\prime}(x)=(\sin x)^{\prime}$.
(b) Let us compute this limit. To that end, we will need the trigonometric identity $\sin (u+v)=\sin u \cos v+$ $\cos u \sin v$. We will moreover need compute $\lim _{h \rightarrow 0} \frac{\sin h}{h}$ and $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}$.
(c) So, the derivative of $\sin x$ is

3. Derivative of tangent.

Similarly to what we have done above, one can prove that $(\cos x)^{\prime}=-\sin x$.
Using these two derivatives as well as the definition of $\tan x$, compute the derivative $(\tan x)^{\prime}$.
4. Computing derivatives with trig functions.

Compute the derivatives of the following functions.
a) $f(t)=\sin t \cos t$
b) $g(x)=\sin x+e^{x} \cos x$
c) $h(z)=2 \tan z+\frac{3 z}{\cos z}$
d) $f(x)=\sqrt{x}+\frac{\cos x}{\sin x}+4$

5. Extra practice.

Does the graph of the function $f(t)=t+\cos t$ have a horizontal tangent line on the interval $[0,2 \pi]$? What about $g(t)=2 t+\cos t$?

