Created by S. Bennoun, M. Hin, and T. Holm ©c, modified by Yuwen Wang
The goal of this exercise is to compute the limit $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}$ that we will need in class to compute the derivatives of trigonometric function. Moreover, since limits are so fundamental, It is a good opportunity to review them.

1. What is $\lim _{h \rightarrow 0} \frac{\sin h}{h}$? (We have computed it in a previous section and it is an important limit to know).
2. One of the trigonometric identities for the half-angle is $\sin ^{2}(t / 2)=\frac{1}{2}(1-\cos t)$ or equivalently, $\cos t=1-2 \sin ^{2}(t / 2)$.
How could this identity be used to compute the limit $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}$? Explain in words.
3. We now want to compute the limit $\lim _{h \rightarrow 0} \frac{-\sin ^{2}(h / 2)}{(h / 2)}$. Compute this limit using part 1 and limit laws. What limit laws have you used?
