Created by S. Bennoun, M. Hin, and T. Holm ©c, modified by Yuwen Wang

1. Objectives

Today we will learn how to:

- using the definition, determine on which intervals a function is differentiable and on which it is not. This implies being able to compute one-sided derivatives and be able to determine when it does not exist
- list the cases where a function is not differentiable and draw the corresponding graphs,
- recognize on a graph where a function fails to be differentiable.

2. Examples

We have seen that the definition of the derivative at a point x is given by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x} .
$$

Keeping the definition in mind, consider the following graphs. For each of them, indicate the point(s) for which the function fails to be differentiable and give a short explanation of why it fails to be differentiable, using the definition.
1.

2.

3.

5.
6.

3. Summary

Looking at the graphs, list some things that can go wrong that prevent a function from being differentiable. To which graphs from part 2 do these things correspond?

