Created by S. Bennoun, M. Hin, and T. Holm (c), modified by Yuwen Wang
The goal of this exercise is to see how we can determine the slope of the tangent line to a function at a given point.

For this exercise, we consider a function $f(x)$ and we are looking for the slope of its tangent line at the point $x_{0}=1$. To do so, we will look at secant lines that pass through the point $\left(x_{0}, f\left(x_{0}\right)\right)=(1, f(1))$ on the function.

1. Draw each of the lines below and estimate their slopes using the grid pattern of the graph.
(a) The line that passes through $(1, f(1))$ and $(4, f(4))$,
(b) The line that passes through $(1, f(1))$ and $(3, f(3))$,
(c) The line that passes through $(1, f(1))$ and $(2, f(2))$,
(d) The line that passes through $(1, f(1))$ and $(1.5, f(1.5))$,

2. Draw the tangent line to the function $f(x)$ at x_{0}.
3. Which of the secant lines you have drawn is the closest to the actual tangent line at x_{0} ? How could you improve this process of approximating the tangent line further?
4. Let us now look at the secant line that passes through $(1, f(1))$ and $(4, f(4))$.
(a) What is its slope?
(b) Rewrite the formula of the slope using only $1, f(1), 4$, and $f(4))$.
(c) Rewrite the formula of the slope using only $x_{0}, f\left(x_{0}\right), 4$, and $\left.f(4)\right)$.
5. For the line that passes through $(1, f(1))$ and $(2, f(2))$, write the formula of the slope using only $x_{0}, f\left(x_{0}\right), 2$, and $\left.f(2)\right)$.
