Created by S. Bennoun, M. Hin, and T. Holm ©, modified by Yuwen Wang

1. Objectives.

- Definition of limits at infinity
- Compute various limits at infinity for rational functions, function horizontal and vertical asymptotes, functions where the behavior at inifinity is " $\infty-\infty$."

2. Definition of Limits at Infinity

We can think of the limit of $f(x)$ as x approaches infinity in the following way: choose any predetermined level of precision. Then the limit $\lim _{x \rightarrow \infty} f(x)$ equals L if we can find a number $N>0$ such that for any $x>N$ the function $f(x)$ approaches L with the desired pre-determined level of precision.
Note that the limit is still a single number.

3. Practice problems.

1. Compute the limits as x goes to infinity and negative infinity for the following functions:
(a) $f(x)=\frac{2 x^{4}+2 x^{2}-3}{3 x^{4}+x^{3}-2 x^{2}}$
(b) $g(x)=\frac{2 x^{5}+2 x^{2}-3}{3 x^{4}+x^{3}-2 x^{2}}$
(c) $h(x)=\frac{2 x^{4}+2 x^{2}-3}{3 x^{6}+x^{3}-2 x^{2}}$
(d) $j(x)=\frac{\sqrt{2 x^{6}+2 x^{2}-3}}{3 x^{3}-2 x^{2}}$
2. Compute the horizontal asymptotes of $f(x)=\frac{\sqrt[3]{x}-4 x+7}{3 x+x^{2 / 3}-1}$
3. Compute the horizontal asymptotes of $g(x)=\frac{1}{x} \sin x$ (compare your answer with $\lim _{x \rightarrow \infty} \sin (\pi x)$ that you computed in the pre-class activity).
4. Determine the vertical and horizontal asymptotes of the following functions:
(a) $f(x)=\frac{2 x^{2}+1}{3 x-5}$
(b) $f(x)=\frac{2 x^{2}+5}{x^{2}-5 x}$

4. Extra practice.

1. Compute $\lim _{x \rightarrow \infty}\left(x^{2}-x\right)$.
2. Compute $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+2}-x\right)$.
3. Compute $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+a x}-\sqrt{x^{2}+b x}\right)$, where a and b are constants
4. Compute the horizontal asymptote of $f(x)=\frac{-x^{2}+5 x-1}{2 x+3}$.
