Created by S. Bennoun, M. Hin, and T. Holm ©C, modified by Yuwen Wang
Here we will inquire about the notion of limit when x goes to infinity or negative infinity.

1. Look at the definition of a limit $\lim _{x \rightarrow a} f(x)$ that we have defined in class.

Having this definition in mind, how can we define the limit $\lim _{x \rightarrow \infty} f(x)$? In other words, how can modify the definition to make it work for x going to infinity while keeping the notion pre-determined level of precision?
2. Look at the graph of $f(x)=\frac{6 x^{2}-5 x+2}{2 x^{2}}$. Use this definition and the graph to determine $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$. Do your answers make sense with respect to what you see on the graph?
3. Again, looking at the graph of $g(x)=\sin (\pi x)$ and at your definition, determine $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x) ?$

