Created by S. Bennoun, M. Hin, and T. Holm © (modified by Yuwen Wang

1. Continuity

Definition: Let c be a real number that is either an interior point or an endpoint of an interval in the domain of f. The function f is continuous at c if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

The function f is right-continuous at c if

$$
\lim _{x \rightarrow c^{+}} f(x)=f(c)
$$

The function f is left-continuous at c if

$$
\lim _{x \rightarrow c^{-}} f(x)=f(c)
$$

The function f is continuous on $[a, b]$ if it is right continuous at
(a) To check whether $f(x)$ is continuous at c, I need to check these three things:
(b) Which of the following functions are continuous? Drawing their graphs can be helpful. (for $g(x)$, it may be helpful to factor the numerator).

$$
\begin{aligned}
& f(x)=x+1, \quad g(x)=\left\{\begin{array}{ll}
\frac{x^{2}-1}{x-1} & \text { if } x \neq 1 \\
1 & \text { if } x=1
\end{array}, \quad h(x)= \begin{cases}\frac{x}{|x|} & \text { if } x \neq 0 \\
1 & \text { if } x=0\end{cases} \right.
\end{aligned}, ~ \begin{array}{ll}
\\
k(x)=\left\{\begin{array}{ll}
\frac{1}{x^{2}} & \text { if } x \neq 0 \\
1 & \text { if } x=0
\end{array} \quad l(x)=\frac{1}{x}, \quad m(x)= \begin{cases}\sin (1 / x) & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases} \right.
\end{array}
$$

(c) For functions with the discontinuities in the previous part, label the type of discontinuity: removable, jump, infinite discontinuities, and oscillating.

2. Intermediate Value Theorem

Theorem: If f is a continuous function on a closed interval $[a, b]$, and if y_{0} is any value between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ for some c in $[a, b]$.

Here is an application of the Intermediate Value Theorem (IVT).
(a) Does the equation $x^{3}+2 x^{2}-x=1$ have a solution between $x=0$ and $x=1$.
(b) Show that the equation $-x^{2}+6 x-7=0$ has a solution between $x=0$ and $x=5$. How would you show that there are in fact two solutions?

