Created by S. Bennoun, M. Hin, and T. Holm ©C, modified by Yuwen Wang

Summary.

Let outline what techniques we've encountered for evaluating limits:

Squeeze theorem.

1. The figure above represents the unit circle and a given angle t.

Determine the areas of: i) the triangle OPA, ii) the area sector OPA, and iii) the triangle OTA.
2. Rank the area in increasing order (i.e. write area $1<$ area $2<$ area 3). Then multiply the inequalities by $\frac{2}{\sin t}$.
3. Finally take the reciprocals. What do you get? What can you conclude about $\lim _{t \rightarrow 0} \frac{\sin t}{t}$? What limit laws or theorem have you used?

Computation.

Using the previous result. Compute the limits:

$$
\text { i. } \lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x^{2}} \quad \text { ii. } \lim _{x \rightarrow 0} \frac{\sin (2 x)}{x} \quad \text { iii. } \lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x}
$$

