Created by S. Bennoun, M. Hin, and T. Holm © , modified Yuwen Wang.

1. What do you think is the main idea from the worksheet from last class?
2. Consider the following functions:

$$
f(x)=\frac{x}{|x|}, \quad g(x)= \begin{cases}1 & \text { if } x=\frac{1}{n}, \text { for } n \text { non-zero integers }, \\ 0 & \text { if } x \neq \frac{1}{n}, \text { for } n \text { non-zero integers }\end{cases}
$$

(a) What are the domains of definition of these two functions? Sketch their graphs.
(b) Concerning $f(x)$, what value(s) does the function go to if we take points close to $x=0$?
(c) Can we take a pre-determined level of precision and then find an interval around 0 such that we can assure the function will be in that pre-determined range?

Key point(s) of this example
(d) Let us now look at $g(x)$. What value(s) does the function go to if we take points close to $x=0$?
(e) Can we take a pre-determined level of precision and then find an interval around 0 such that we can assure the function will be in that pre-determined range?

Key point(s) of this example

Description of Limits

We can think of the limit of $f(x)$ as x approaches a in the following way: choose any pre-
 around a, such that for any x different from a in this interval, the function $f(x)$ approaches L with the desired pre-determined level of precision. We use the notation $\lim _{x \rightarrow a} f(x)$ for the limit of $f(x)$ as x approaches a.
3. Rewrite the definition in a way that makes sense to you.
4. Let us now look at what this means graphically. For each of the following example, determine $\lim _{x \rightarrow 1} f(x)$ as well as $f(1)$.
a)

b)

c)

5. Let us now consider the following functions. For i) and ii), determine if the limit $\lim _{x \rightarrow 0} f(x)$ exists and if so, what it is. Determine also $f(0)$. For iii), same questions but for $\lim _{x \rightarrow 1} f(x)$ and $f(1)$.
i)

ii)

The first example above motivates the following definition of one-sided limits. For any pre-determined level of precision we choose,

- the limit of $f(x)$ as x approaches a from the left, written $\lim _{x \rightarrow a^{-}} f(x)$, is the number L that the function $f(x)$ approaches when x is in an open interval (b, a) with $b<a$, in other words with x strictly smaller than a.
- the limit of $f(x)$ as x approaches a from the right, written $\lim _{x \rightarrow a^{+}} f(x)$, is the number L that the function $f(x)$ approaches when x is in an open interval (a, b) with $a<b$, in other words with x strictly greater than a.

