Created by S. Bennoun, M. Hin, and T. Holm ©C, modified by JL Goh

1. Define $f(x)=\frac{x^{2}-4}{x-2}, g(x)=x+2$, and $h(u)=u+2$. Which of these three functions are equal?
2. (a) Draw the graph of the function $f(x)=|x|$ and write down the definition of this function (i.e. $|x|=\ldots$).
(b) How can we "modify" this function to shift it horizontally by 2 units to the right and vertically upward by 3 units (i.e. we want the vertex of the function to lie at $(2,3))$?
(c) Let $g(x)=x^{2}-3 x-4$. Are $f \circ g$ and $g \circ f$ equal?
3. Do we have $0 \cdot \infty=0,0 \cdot \infty=\infty$ or something else?
4. (a) Write down the domain and range of $f(x)=e^{x}$. On what domain is it increasing?
(b) Is $f(x)=e^{x}$ one-to-one? Is $f(x)=e^{x}$ invertible? If it is, write down $f^{-1}(x)$ as well as its domain and range.
(c) Using (a), find two different expressions which appear to be equal to x. When are these expressions well-defined?
5. In addition to the basic trigonometric functions of sine, cosine, and tangent, there are reciprocal functions as well. We will consider the secant function: $\sec x=\frac{1}{\cos x}$.
(a) Draw the graph of the function $f(x)=\sec x$ and write down the definition of this function.
(b) Let $g(x)=\arccos x$ be the inverse of the cosine function. Is $f(x)=g(x)$?
